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1. INTRODUCTION

1.1 BACKGROUND

Flying qualities requirements for military aircraft
are currently specified in MIL-F-8785C, "Military Specifica-
tion - Flying Qualities of Piloted Airplanes." The principal
tenet of MIL-F-8785C is that the dynamics of the overall air-
craft system -- as perceived by the pilot during controlled
flight -- can be described and evaluated in terms of simpli-
fied dynamic models. The specification does not discuss the
principles of aircraft design nor does it describe how the
designer ensures that the specification be met. Conventional
aircraft typically have simple dynamic descriptions which
match those used in MIL-F-8785C. However, the advent of
highly-augmented and control-configured aircraft have brought
a dramatic change in the potential complexity required of a

full dynamic description.

Highly-augmented and control-configured aircraft dif-
fer from conventional aircraft in the number (order) of dynamic
modes that are present. Highly-augmented aircraft introduce
pre-filters and flexible mode filters which add modes to the
closed loop response. Verification that an aircraft complies
with the requirements on dynamics is performed principally
through equivalent system matching (exceptions are the time-
domain roll-sideslip coupling and roli performance require-
ments on the actual response of the aircraft). The equivalent
systems methodology produces an equivalent of the augmented
aircraft dynamics by matching the actual high-order system to
a low-order system like those in the specification. Flying



qualities are then evaluated in terms of this equivalent low-

order system.

A serious restriction of the methodology used in
MIL-F-8785C is that only motions about steady-trimmed flight,
based on linear equations of motion, can be considered. The
low-order systems in the specification are only valid for per-
turbations about equilibrium flight of that aircraft. Large-
amplitude combat maneuvers can not be adequately specified
because of an inadequate dynamic representation of the air-
craft in such maneuvers; the nonlinear, time-varying character
of the full aircraft equations of motion causes these diffi-

culties.

Another restriction of MIL-F-8785C is that only
single-input/single-output dynamics are described, such as
longitudinal control stick force relative to normal accelera-
tion. However, in many critical situations of flight the pilot
is commanding multiple inputs and the aircraft is responding
with multiple outputs in its natural dynamics of translation
and rotation.

This program researched innovative methods for ana-
lytically assessing the flying qualities of aircraft under any
controllable maneuver. The research was in response to the
two principal limitations of MIL-F-8785C noted above. The
research effort pursued those results in nonlinear system
theory and analysis that would accommodate the full nonlinear
siX-degree-of-freedom equations of motion and could l=ad to a
flying qualities formulation for the overall multivariable air-
craft system in any maneuver. As is outlined in the remainder
of this chapter and detailed in this final technical report,
the Nonlinear Flying Qualities (NFQ) research effort led to

two main results:



° A technique analogous to the equivalent
systems methodology (herein called
canonical systems theory) which over-
comes two major limitations of equivalent
systems: the restrictions of single-input,
single-output and of time-invariance

° A generic criterion for characterizing
aircraft dynamic behavior in any maneuver
through the use of a nonlinear relative
controllability theorem.

Together, the two results are combined into a methodology that
can provide the basis of a new flying qualities specification
“or aircraft performance in unsteady large amplitude maneuvers,
with respect to multiple-input, multiple-output time-varying

dynamic models.

. 2 PROGRAM OVERVIEW

The research goal was to extend the current flying
qualities formulation of MIL-F-8785C to:

° Include unsteady, large-amplitude flight
maneuvers (e.g., air combat maneuver
profiles)

) Include multiple-input, multiple-output

dynamics (e.g., simultaneous pitch and
roll pilot inputs to the vehicle normal
acceleration and roll response)

° Include the current flying qualitites
formulation as a special case

° Obtain a practical, numerically com-
putable formulation.

Once a preferred formulation was found, the NFQ pro-
gram tested the research product in a simulation of a highly



augmented, control-configured fighter/attack aircraft; a non-
linear, six-degree-of-freedom (6-DOF) aeropropulsive model of
the AFTI-16 aircraft was provided by the Flight Dynamics Lab-
oratory for the applications test and evaluation. Figure 1.2-1
illustrates AFTI-16 maneuvers which are typical of those used

in the 6-DOF simulation analysis.

The research objectives emphasize the development of
an applied flying qualities formulation which would provide
numerical results that encompass, as a limiting case, the cur-
rent formuiation of MIL-F-8785C. Hence, computability and
compatibility with MIL-F-8785C were driving factors in both
the literature search and the formulation tasks.
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Figure 1.2-1 Large Amplitude AFTI-16 Maneuvers



1.3 SUMMARY OF RESULTS

This section provides a summary of results in terms
of each of the three NFQ program objectives: literature search,
olo

formulation and evaluation.

1.3.1 Literature Search

A review of the literature in nonlinear system theory

focused on three general areas:

° Local Theory (i.e., linearized systems)

° Global Theory (i.e., differential geom-
etry and topology)

° Functional Analysis (e.g., Volterra
series).

In general, global theory was found to ask different questions
than posed by NFQ. Global theory does not investigate the
fine quantitative structure of stability and control, but in-
stead searches for large-scale descriptions of dynamic behavior
(e.g., the number and character of bifurcations). Mathemati-
cally speaking, global theory is invariant under the action of
diffeomorphismsT on the state space or the control space. In
other words a restructuring of the aircraft modes, e.g., ex-
changing the lateral and longitudinal modes, would produce the
same global results but would certainly not meet with pilot

approval.

*Definitions of the mathematical terms that will be introduced
can be found in a glossary at the end of this report and in
Appendix C.

tDifferentiable functions from a space into itself, with a dif-
ferentiable left and right inverse. See Ref. 42 for a compre-
hensive definition.



Functional analysis techniques, such as Volterra
series expansions, were found to be computationally immature.
However, such techniques are very promising from a purely the-
oretical point-of-view. Therefore, many functional analysis
techniques merit further basic research to develep practical
computational methods. Additional detail on the literature
research in global theory and functional analysis is contained

in Chapter 4.

As a result of the above findings, the NFQ research
program focused on local (linearized) theory. (Nevertheless,
as reported in Chapter 2, local theory does include somewhat
specialized nonlinear analysis results.) Only the local theory
was found to offer a mathematical basis which today is mature
enough to be consistent with the latter two requirements listed
in Section 1.2: inclusion of the current flying qualities
formulation and computability.

1.3.2 NFQ Formulation

Table 1.3-1 presents the basic viewpoint of the re-
ported research, in which any flying qualities formulation is
seen as consisting of five sequential characteristics. The
current effort only involves the first four characteristics;
the final characteristic must be investigated in future pro-
grams through unmanned and manned (pilot-in-the-loor) simula-

tion as well as through actual flight tests.

The reference flight path of MIL-F-8785C is restricted
to be steady, equilibrium flight, whereas the NFQ formulation
applies to any maneuver that can be realized through control
inputs. Both formulations refer to a local (linearized) per-
turbation of the reference flight path, but the resulting
mathematical structure cf NFQ permits the full linearized,

time-varying dynamics to be considered.

6



TABLE 1.3-1

CHARACTERISTICS OF A FLYING QUALITIES FORMULATION

FORMULATION
CHARA_TERISTICS

CURRENT

NFQ

=

-—

Reference Flight Path

Steady, Equilibrium Flight:
6:5:&:}:\):%:0

General Large Amplitude Maneuvers

Perturbed Flight Path

Linear, Constant Coefficient,
Single Input/Multiple Output
Dynamics and Modal character-
istics

Linear, Time-Varying Coefficient,
Multiple Input/Multiple Output
Dynamics

Mathem.tical Structure

Low Order, Single Input
Approximation, mostly in
Laplace or Frequency Domain
("Equivalent System")

Low Order, Multiple Input/
Multiple Output Approximation
in Time Domain ("Canonical
System")

Intrinsic Equivalent System Parameters Functions and Functionals of

Flying Qualities (Poles, Zeros, Time Delay), Canonical System Parameters

Parameters Roll-Sideslip Coupling, and (Grammian Singular Values and
Roll Response Eigenvectors; etc)

Extrinsic Pilot Opinion Pilot Opinion; Combat Effective-

Flying Qualities (Cooper-Harper Rating), ness; Terrain-Following

Parameters Pilot-Vehicle Performance, Capability; etc

and Pilot Workload

The two formulations, within their mathematical struc-

ture of perturbed dynamics, define intrinsic flying qualities

to be parameters that describe a simplified or idealized subset

of marhematical structures.

For example,

the current formula-

tion includes the fcllowing equivalent system of longitudinal

control stick to pitch rate dynamics (Ref.

(s+a)e "

1, pr B

T(s) = K

s + 2fws + w2

(1.3-1)

An idealization of the response of an unaugmented aircraft

which is only one of a great many possible simplifications of

an actual, higher order transfer function of a current fighter

~J



aircraft. Only research into the fifth characteristic (pilot
opinion) has justified the particular five-parameter version
of Eq. 1.3-1 (Ref. 2). Such research has led to correlations
between these parameters and Cooper-Harper pilot ratings, as
presented in MIL-F-8785C.

On the other hand, the NFQ formulation reported here
considers the full perturbed dynamics described by the vector
equation

x = Fx + Gu (1.3-2)

where F and G, as well as x and u are in general time-varying
as a result of multiply-perturbed control inputs about those
that generated the reference flight path. One possible sim-
plification (i.e., a candidate canonical system) has G as
block diagonal and F as block upper triangular such that sta-
bility lateral-directional dynamics are decoupled, i.e., the
roll mode is decoupled from the dutch roll and spiral modes.
One candidate measure of intrinsic flying qualities is the
relative controllability index of Eq. 1.3-2 (as detailed in
Chapter 2). This index is a measure of the margin of control-
lability enjoyed by a pilot fortunate enough to fly such an
idealized aircraft, and furthermore, indicates the extent to
which the approximated dynamics, e.g., decoupled roll, dutch
roll, and spiral, represent the true aircraft dynamics.

Like the equivalent system of Eq. 1.3-1, any trial
definition of a canonical system structure only attains tran-
scendent importance when further research into extrinsic flying

qualities demonstrates three conditions:

) Canonical system structures with speci-
fied parameters can be made to represent



aircraft dynamics that pilots prefer,
i.e., the canonical system would receive
a low Cooper-Harper rating

) Aircraft dynamics which cannot be approx-
imated by any of the specified canonical
systems are generally perceived by pilots
to perform poorly, i.e., the aircratt
receives a high Cooper-Harper rating

° Good modern aircraft (highly augmented
and control-configured) can be made to
approximate the canonical simulation
model .

Because experiments with pilot-in-the-loop simulation were not
performed, this effort only provides a NFQ formulation of gen-
eric applicability to any trial definition of canonical system
structure and subsequent measure of intrinsic flying qualities
within the perturbed dynamics of Eq. 1.3-2. Several examples
of large amplitude maneuvers, of canonical systems and of in-
trinsic flying qualities measures were defined to conduct a
test and evaluation of computability, and thereby to demon-
strate generic applicability.

1.3.3 NFQ Test and Evaluation

The NFQ formulation was tested and evaluated with a
nonlinear 6-DOF simulation and with special numerical procedures
to solve the canonical system and relative controllability
parameters. The goal of this evaluation was to demonstrate
the flexibility and numerical reliability of the numerical
procedures, not to characterize the flying qualities of the
aircraft modeled in the simulation. Preliminary assessment of
the value of these metrics for quantifying flying qualities is
the recommended next step.



Two principal maneuvers were considered: a wind-up
turn and a rolling reversal. The canonical systems methodology
was applied to time-spaced linearizations of the aircraft dy-
namics during each of the maneuvers. The criteria investigated

included:

° | |1aF |} and | }AG||; the L2 norms of the

differences between the true-linearized

and closest-canonical matrices for differ-

ential equations of the form of Eq. 1.3-2
° eCo; the relative controllability meas-

ure which is computed using the relative
controllability theorem of Sastry and
Desoer (described in Section 4.3).

The norms ||AF|| and ||AG|| measure the closeness of
the fit between the true perturbed dynamics and a given member
from the chosen canonical syster class, and thus can be used
in a gradient procedure to find the closest canonical system.
This is analogous to the current practice of finding the closest
equivalent system (in the Laplace domain) to the true constant
coefficient, single input linearized dynamics. If pilots like
simulated aerospace vehicles that fly exactly like the canonical
systems and do not like quite different dynamic behavior, then
| 1aAF|| and |]AG|] could also be used as intrinsic flying quali-
ties measures with, one expects, strong correlations with pilot

opinion.

The intrinsic flying qualities parameter eCO is, in a
very general sense, analogous to a stability margin such as
the equivalent system parameter { of Eq. 1.3-1. In fact, eC,
is a controllability margin. It is conjectured that strong
correlations exist between eCo and extrinsic flying qualities

such as pilot opinion and close-in combat effectiveness.

10



The NFQ test and evaluation investigated the relative
performance of various canonical system structures in terms of
| 1AF| |, |1AG|| and eCo over time, from F upper triangular to
pure diagonal. The different canonical system structures were
examined to discover the best approximation to the time-varying

dynamics during the maneuver.

1.4 RECOMMENDATIONS

The NFQ test and evaluation revealed that the canoni-
cal systems methodology is a tractable and useful approach to
characterizing aircraft behavior based on time-varying multi-
variable descriptions of the aircraft. The next step is to
apply the tools that have been developed to calibrate the in-
trinsic flying qualities (e.g., eCo) against extrinsic flying
qualities such as pilot opinion and combat effectiveness. This
correlation of intrinsic and extrinsic flying qualities can
form the basis for the next generation military specification.
However, to avoid the high cost of pilot-in-the-loop simulation
or flight test, the NFQ formulation can be initially applied
to an aircraft in an autonomous flight mode. The primary recom-

mendations are thus:

° An initial approach to calibrating the
canonical system-parameters to extrinsic
flying qualities should be pursued through
the analysis of autonomous flying modes,
e.g., automatic landing, terrain-following,
in which the vehicle performance can be
quantitatively evaluated without pilot
opinion

® In a parallel investigation, the canonical
systems can be flown while adjusting the
control and guidance algorithms, to yield
an ideal system structure that provides
the best performance in a given mission.

18



1.5 REPORT ORGANIZATION

This report is divided into five chapters and three
appendices which document the research effort and describe the
flying qualities analysis tools developed to date. Although
the literature search was the first task, it is felt that the
detailed results are of interest only to the basic researcher;
to permit a simple, unbroken exposition of the NFQ formulation,
results from the literature search are delayed until Chapter 4.
Chapter 2 provides an overall account of the NFQ formulation:
canonical systems theory, its derivation, its relevance to
flying qualities, and the procedure for numerically computing
a canonical system match. Chapter 2 also includes a detailed
exposition of the relative controllability theorem used to
define one intrinsic measure of flying qualities. Chapter 3
details the numerical results obtained with the canonical sys-
tems technique and the evaluation of relative controllability.
Canonical system candidates and the rationale for the specific
choices are also documented in Chapter 3. Furthermore, Chap-
ter 3 presents simulation traces of the true and matched canonic
systems in the selected large amplitude maneuvers. Finally,
Chapter 5 summarizes this report and provides the conclusions

and recommendations of the NFQ research.

Appendices A and B provide comprehensive descriptions
of the numerical procedures developed during the program.
Appendix A documents the 6-DOF simulation and the specific
aircraft model employed. Appendix B docgments the Canonical
System Evaluator (CASE) procedure which implements the method-
ology discussed in Chapter 2. Appendix C contains a review of
underlying mathematical concepts, i.e., induced norms and the
controllability Grammian, which are mentioned frequently
throughout this report. Finally, there is a glossary of the

mathematical symbols used.

1.2



2. CANONICAL SYSTEM THEORY AND RELATIVE
CONTROLLABILITY FOR FLYING QUALITIES ANALYSIS

Canonical system theory is the basis for the applied
flying qualities formulation developed in the NFQ program.
Although similar to the equivalent systems methodology cur-
rently applied in flying qualities analysis, canonical systems
theory admits multivariable time-varying descriptions of the
aircraft dynamics. Furthermore, like the equivalent systems
methodology, canonical systems are produced by computing closest
approximations to the true aircraft dynamics. This chapter
contains a description of the canonical systems theory and the
general methodology with which it is applied to the aircraft
flying qualities analysis problem. Section 2.1 defines canoni-
cal system theory and describes the specific form that the NFQ
analysis employs. Section 2.2 describes how relative control-
lability can be used as a flying qualities criterion. Finally,
Section 2.3 describes the overall process in which the canonical

systems technique would be used.

2.1 CANONICAL SYSTEM THEORY

Canonical system theory can best be understood through
a discussion of its similarities with realization theory, de-
composition, canonical forms (e.g., Jordan matrix), structure
and parameter identification, and the equivalent systems meth-
odology. Note that the first three techniques mentioned are
direct methods, i.e., can be solved in closed form, whereas
the last three involve approximations and estimation theory.

Canonical system theory is primarily an approximation method



that lies in between the two extremes of approximation and
estimation. The discussion of these related techniques begins
with the equivalent systems methodology.

In flying qualities analysis using the equivalent
systems methodology, the problem being resolved has the fol-
lowing elements:

° Given that modern aircraft differ signi-
ficantly in their mathematical models
4nd in control augmentation and control
surface configurations, a common air-
craft dynamic model is required which is
representative of most aircraft and yet
maintains simplicity

° Once an ideal (low-order) or desired
aircraft dynamic model has been deter-
mined, the free parameters of the ideal
(low-order) system must be adjusted such
that the ideal system best approximates
the true aircraft dynamics with respect
to an intrinsic criterion cr norm; fur-
thermore, the acceptable values of these
parameters must be correlated with
extrinsic flying qualities criteria
(e.g., pilot opinion).

A final obstacle to employing equivalent systems in
flying qualities analysis is that the norm implied in the sec-
ond problem element may be very large, hence, suggesting that
the equivalent system is a poor representative of the true
aircraft dynamics. What constitutes a poor match, and when to
conclude that a poor match is all that can be accomplished,
have been discussed at some length (Refs. 1-12) but definitive
answers seem not to have been found -- though a feeling emerges
that a bad match indicates poor flying qualities.

The preceding problem statement, i.e., taking an
ideal system model and matching it to the true dynamics, could

14



describe numerous mathematical techniques. The phrase --
equivalent systems methodology -- refers to the current prac-
tice in flying qualities analysis of employing a Laplace var-i-
able transfer function as the mathematical structure for the
ideal model and adjusting its parameter (i.e., zetro, pole, and
delay) values such that the ideal frequency response matches
the frequency response of the true aircraft. This process is,
therefore, similar to the general concept of decomposition
(specifically order-reduction) in which excess modes are dis-
carded and the true dynamics are recast into a lower-order
model. Furthermore, this method also includes elements of
parameter identification (where measurements are considered to
be perfect).

The fundamental limitation of equivalent systems re-
sides in the use of frequency response data of the true dynam-
ics and not in the general concept. The use of frequency re-
sponse data forces the flying qualities analyst to consider
only steady, equilibrium flight conditions. The frequency
response cannot include time-varying and transient phenomenon
thereby excluding most maneuvers from the equivalent systems
approach.

The basic tenets of equivalent systems, i.e., creating
an idealized system, can be accomplished through a number of
techniques. For example, parameter identification can be used
to identify the unknown parameters of an ideal model, regard-
less of whether the model is linear, time-invariant or time-
varying, or nonlinear. Similarly, as exemplified by Section 4.2
nonlinear forms of realization theory exist. Thus it is not
necessary to work with the frequency response alone; the time-
domain data can be used. Nevertheless, the fundamental con-
cept of equivalent systems is an excellent starting point for
numerous problems. Canonical systems expands the basic tenet

15



of equivalent systems by extending the classes of ideal systems

to time-varying, multivariable state-space forms. The method-

ologies for matching the :deal system in canonical systems

theory, however, is markedly different, because of the dif-
ferent form of the ideal system and the use of system-theoretic

properties, e.g., controllability.

The closest canonical system is that system which is
closest to the original system in the norm sense and maintains
the controllability properties of the original system. The
relative controllability measure of the canonical system re-
flects how well the canonical system approximates the original
nonlinear system. Consequently, canonical systems surpasses
the equivalent systems methodology because they are matched to
the original nonlinear system through controllability, unlike
equivalent systems which are matched to a linear frequency

response representation of the aircraft dynamics.

2.1.1 Canonical System Theory: Definition

A canonical system is a class of systems that approxi-
mates the original system model for a particular solution and
(ideally) maintains desired properties of the original system.
For a linear time-varying system, with a desired property
(e.g., controllability)

x(t) = F(t)x + G(t)u (2.1-1)
the canonical systems consist of those systems described by

x = F (t)x + G (t)u (2.1-2)
which satisfies the desired property(s) with

F(t) & F(t) - AF (2.1-3)
16



G (t) & G(t) - AG (2.1-4)
where

|1aF |1 < (2.1-5)

A
(]
h

(2.1-6)

A
m

[1aGI | <

are the induced norm of the maps F(t): R"™ » R", G(t): R™ » R".”

The closest canonical system is that member of a can-
onical system class, Fe or Ge,T that minimizes the induced

norm, viz,

m
"

min IIFe - F(t)lli (2.1-7)

GC

min IIGe - G(t)IIi (2.1-8)

Similar canonical system classes can be developed for nonlinear
equations of the form

x = f(x, u, t) (2.1-9)
where the canonical system class satisfies

f =min ||f (x,u,t) - f(x,u,t)|]. O <t < T (2.1-10)
TG ) SeAEE s T

Note that this induced norm is performed on infinite dimen-
sional spaces, i.e., Eq. 2.1-10 1is a functional optimization

*See Appendix C for a discussion of induced norms.
tFor convenience, the dependence of Fe and Ge on time will be
dropped from this point on in the discussion.
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problem, and hence, would require a much more complicated
numerical procedure than the parameter optimization problem of
Eqs. 2.1-7 and 2.1-8.

In accord with the philosophy stressed throughout the
NFQ program, the linear time-varying form of canonical system
theory, Eqs. 2.1-2 to 2.1-8 will be pursued because of its real-
time computational ease over the nonlinear form, Egqs. 2.1-9 and
2.1-10.* Furthermore, the key property that will be enforced
in a canonical system class will be controllability, hence,
the emphasis on the relative controllability theorem of Sastry
and Desoer in Chapter 4.

2.1.2 Second-Order Canonical System Example

The canonical system definition just outlined can be
applied to a full aircraft state equation with 12 or more states

or to simple systems. As an example consider a second-order
system

g= X + u (2.1-11)

Equation 2.1-11 is a short-period dynamics approximation where

X a [w, q]T ' (2.1-12)

*The relative controllability is useful in bcth the linear and
nonlinear canonical systems forms, however, the linear piece-
wise time-invariant computation procedure of Section 4.3
justifies the use of linear canonical systems theory.
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includes normal velocity and pitch rate and

u? (s (2.1-13)

u = 8y » Spgpl
are the elevator and flap deflections. One canonical systen
class which has a simpler structure is

% = X + u (2.1-14)

where fi and g; represent free parameters of the canonical
system that will be selected to minimize IIAFIIi and IIAGIIi,
which were defined in Eqs. 2.1-3 and 2.1-4. The induced norm
for the problem in Eqs. 2.1-11 and 2.1-14 is the Ly norm,T
defined for an arbitrary mxn matrix A as

Al = " Ja A"y islin (2.1-15)

1

where A" is the conjugate transpose of A and Ai is the ith

*
eigenvalue of the product (AA ). (Note that the right hand
side of Eq. 2.1-15 is equivalent to the maximum singular value
of A. Reliable numerical procedures for computing the singu-

lar values of a matrix are readily available.)§

The minimization defined in Eqs. 2.1-7 and 2.1-8 for
finding the closest canonical system requires a numerical opti-
mization algorithm (see Appendix B). Solving for the second-
order example of Egs. 2.1-11 and 2.1-12 where the numerical

tA thorough discussion of L_ and £_spaces and their respective

norms is contained in Ref. 13, Chapter 2, Ref. 14, Section 2.10,
or Appendix C.

§See Ref. 13 or Appendix C for a derivation of the L2 norm of
a matrix as the maximum singular value.
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values for F are representative of the AFTI/F-16 in steady-
trimmed flight at 829 ft/sec,

-2.24 829
= (2.1'16)

-0.241 -10.15
the closest canonical dynamic matrix is

-2.20 828.6
F = (2.1“17)
¢ 0 -10.10

where FC (and subsequently Gc) were computed with the numeri-
cal procedure described in Appendix B. The final L2 norm of
the canonical system match is

IIAFIIL2 = .047, IIFHL2 = 828. (2.1-18)

Although the L2 norm of the difference between the dynamics
matrices are quite small (relative to |[|F||) their eigenvalues
are distinctly different. Because FC is uppur triangular the
eigenvalues are simply the diagonal values

A(FC) = -2.2, -10.1 (2.1-19)
The eigenvalues of the true dynamics can be readily computed.
A(F) = -6.2 £2.11 (2.1-20)

Not only are the magnitudes different but the canoni-
cal system has two real poles while the true system has a com-
plex pair. However, the principal tenet of canonical systems
theory is, if ||AF|| and ||AG|| are small, the true and canoni-

cal systems will share the same properties. One of the most
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important shared properties is trajectory equivalence, 1i.e.,
the property that the solutions of the true and canonical sys-
tems are within a prescribed tolerance. This property can
also be expressed mathematically as,

[1ax]|] < ¢ (2.1-21)

where
Haxtl & 1ix(o) - x (0)]1 (2.1-22)

For the second-order example being considered, the solutions
are, according to the variation of constants formula (see
Ref. 15).

F(t-to)
x(t) = e g(to) (2.1-23)

where the state transition matrix is the matrix exponential
F(t-to)
e and

F (t-t )
x(t) = e x(t)) (2.1-24)

The second-order system is sufficiently uncomplicated to permit
the analytical computation of the matrix exponential, hence,
(At=t-to)

e'6'2At(1.89 sin 2.1At e'6'2At

FAt _ + cos 2.1 At)

(595.2 sin 2.1At)

LI R i R R I T I

e 020t 0116 sin 2.1at) (1.8° siv 2.]1at

+ co» 2.1at)

(2%
|
]
]
1
[]
1
'
1
]
]
]
]
]
]
]
]
[}
]
]
[}
[}
1
1
1
]
)

ey Y h ===

(2.1-25)
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and ‘or the canonical system

0
I

(2.1-26)

Although the transition matrices in Eqs. 2.1-25 and
2.1-26 appear significantly different, the fact that ||AF|]| 1is
small, will cause the solutions generated with Eqs. 2.1-23 and
2.1-24 to lie within a tolerance governed by ||AF||. The
bounds on the magnitude of Ax(t) (i.e., the difference between
x(t) and gc(t)) will be derived in the following section. The
trajectory equivalence of the second-order system under con-
sideration can be demonstrated by computing Eqs. 2.1-23 and
2.1-24 using the solutions of the transition matrices just
given in Eqs. 2.1-25 and 2.1-26.

Figure 2.1-1 contains the time responses of the true
and canonical systems of Eqs. 2.1-23 and 2.1-24, with respect
to identical initial conditions. Notice that only the true
system trajectory exhibits a second-order (i.e., damped sinu-
soidal) response in pitch rate. This phenomenon reflects
Eqs. 2.1-25 and 2.1-26 which show that the canonical system
transition matrix has no sinusoidal functions. The difference
in responses truly originates from the complex eigenvalues of
the true system, whereas the canonical system has real eigen-
values and hence, produces only first-order responses. The
reason the canonical system does not have complex eigenvalues
is the structure itself.

The triangular canonical system structure of Eq. 2.1-24

will not admit complex eigenvalues. This arises because only
real-valued matrices are deemed appropriate for the canonical
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PITCH RATE (rad/sec)

NORMAL VELOCITY TIME (sec)

qp= -2 deg/sec

000 028 030 078 100 125 130 178 200 223 250 000 023 086 075 100 135 180 173 200 228 1280
TIME (sec) TIME (sec)
Figure 2.1-1 Second-Order Example: True and Canonical

Responses to Initial Conditions

systems which are employed to model physical systems, e.g.,
aircraft dynamics. The dynamics matrix in Eq. 2.1-14 is upper
triangular, hence its eigenvalues are the diagonal elements,

thus it can have only real eigenvalues. The canonical system

for this second-order example is inadequate because, regardless

of how the match is computed, FC can only have real eigenvalues,

f1 and f
mode of an aircraft is composed of a complex pair of eigenval-
ues. Later, in Chapter 3, in the discussion of canonical sys-
tem classes for 6-DOF aircraft dynamics, the issue of creating
structures which admit complex eigenvalues is addressed. Let
it suffice to say that if the canonical dynamics matrix or a

submatrix is upper (or lower) triangular, diagonal, or in

Jordan form, then the eigenvalues of that matrix or submatrix

will only be real and thus, may not represent the ideal dynamic

structure desired.

*Although complex-valued differential equations do arise in
mathematical physics, the classical mechanics description of
the aircraft equations has coefficients which represent phys-
ical quantities such as mass, or are elements of a direction
cosine matrix.
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The analysis just presented can be extended to include
the canonical control matrix. For the numerical example under

consideration (for the same trim point used earlier),

-3.52 -7.99]
-.571 -.394

(op
"

(2.1-27)

The closest canonical control matrix (for the class defined in
Eq. 2.1-14) is

0 -7.99
G = (2.1'28)
¢ -.571 0

where

[1aG|| = 3.52, |IGl| = 8.75 (2.1-29)

The comparison of the trajectory for the inhomogeneous canoni-
cal system (where the control inputs u are non zero) versus
the inhomogeneous true system is easily accomplished with the
variation of constants formula (Ref. 15) viz,

F(t-t ) t
x(t) = e " x(ty) +f eF(E-T) ¢ u(r)de (2.1-30)

t
o

for the true system (Eq. 2.1-11) and

F (t-t ) ©F_(t-1)
x {t) =e€ ° x(t) +-jf e © G u(t)dr (2.1-31)

%

for the canonical system (Eq. 2.1-14). An analysis of the
trajectories is straightforward using the same transition ma-
trices defined in Eqs. 2.1-25 and 2.1-26.
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The most significant concept illustrated by the pre-
vious example is that, like equivalent systems, the canonical
systems methodology tries to minimize a distance measure between
a true and ideal system by adjusting the parameters of the
ideal system. The ideal of the second-order example just pre-
sented was that the dynamics matrix should be upper triangular
and the controls decoupled. This example is not especially
useful in light of the fact that the true short-period dynamics
did not necessarily require simplification. But consider the
case when there is a control augmentation system with an inte-
grator in the forward loop. Equation 2.1-11 then becomes

- - - -
72 7z 7 7
w "q 7l Sy "OqgF
X = | M Mq My x ¢+ MaH MGTEF u (2.1-32)
I 1 1 I
v o la Tl 6y OqgF

A candidate canonical system may then be one which decouples
the integrator state from the short-period dynamics and con-

trols. Hence,

_ ) ] )
£, f, 0 g &
X, =[fy f, O | x . +lg3 g, | u (2.1-33)
0 0 f5 0 0
b - . -

Furthermore, f5 may be arbitrarily forced to zero. The form
of the canonical system in Eq. 2.1-33 yields a system in which
the augmentation is completely decoupled, i.e., an implicit
model reduction has been enforced where a low-order system
approximates the augmented dynamics. Thus the submatrices
formed by fl - fa and g1 - g, should yield the second-order
approximation to the dynamics in Eq. 2.1-32.
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2.1.3 Canonical Systems and Trajectory Equivalence

The mathematical basis for canonical system theory is
derived from functional analysis and the theory of differen-
tial equations. Fundamentally the problem of linear canonical
system theory is to demonstrate that a perturbation in F(t) or
G(t), i.e., AF(t) or AG(t) where

| 1AF(t) [ ] (2.1-34)

| A

Ef

P> (2.1-35)

| 1aG(t) || g

|~

produces a perturbed solution that lies in the neighborhood of

the nominal solution, viz,

[1ae(e) ]| < £y (2.1-36)
where A¢(t) is the difference between the solutions of the
differential equations (a vector), Eqs. 2.1-1 and 2.1-2. For
example, Ref. 13 uses the criterion of matrix measure (not a
true norm) to bound the solutions of a linear time-varying
differential equation. The theorem is as follows (Ref. 13,
p. 35): given

x(t) = F(t) x(t) (2.1-37)

where the solution of Eq. 2.1-14 is

t
x(t) = exp {/ F(u)dt} x(t)" (2.1-38)
t

(o]

*Equation 2.1-38 holds for any F(t) that commutes with itself
over time, see Ref. 15 and Appendix C.
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Then Eqs. 2.1-37 and 2.1-38 satisfy the inequalities

t
Ix(t )1 exp {- .[ Hl-F(r)ldr} < [x(t)|

%

t
< Ix(r )| exp {_[ p(F(t)lde} (2.1-39)
3
(o)

where p{F(t)} is the matrix measure of F,

u(F) & lim (111 + ¢F|| - 1)/0 (2.1-40)
¢0+0

where F may be constant or time-varying. (See Ref. 13, p. 30
for proof of the existence of the limit in Eq. 2.1-40.) Note
that the matrix measure is not a norm because u(F) = 0 does

not imply that F = 0. The following properties of the matrix

measure will be of use in the ensuing discussion:

u(I) =1 , wu(-I) = -1 (2.1-41)
w(0) =0 (2.1-42)
- HIFI € -p(-F) < p(F) < |IF|] (2.1-43)
WIAF) + (1-A)F,] < Ap(F ) + (1-M)u(Fy) (2.1-44)
i.e., p: c™™ , R is convex
- w(-F)Ix| < |Fx| (2.1-45)
and
l(F) = w(Fy)l < Tu(Fy=Fy)| < [IF =Fyl| (2.1-46)
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Using Eqs. 2.1-41 to 2.1-46; Eq. 2.1-39 can be recast into an

inequality based on the norms of F, albeit a less tight in-
equality,

t
lx(to)l exp {- J- [ 1F(t)|)dt} < [x(t)]

t:O
t
< Ix(t )| exp {.{ [IF(t) ] 1dt} (2.1-47)
t:0
The proof follows from
D n(t) < u(F(t)) x(t) (2.1-48)
D'n(t) < [IF(t)]] n(t) (2.1-49)

where n(t) = |x(t)|, Eq. 2.1-49 follows from the relationship
between the matrix measure and norm in Eq. 2.1-43. Assuming
x(t) is a nonzero solution of the differential equation,
Eq. 2.1-38, then Eq. 2.1-49 becomes

D n(t)/n(t) = |IF(t)]| (2.1-50)

Integrating Eq. 2.1-50 yields the right hand inequality of
Eq. 2.1-47. A similar argument with n(t) = -|x(t)] can be
used to prove the left-hand inequality of Eq. 2.1-47.

The techniques above can be used to show that the
bounds of Ax, the difference in the true and canonical system
trajectories is governed by the norm of AF. First note that
the true and canonical differential equations are
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(2.1-51)

b
1]

"

e

=T

(F - AF) x, (2.1-52)

X
-C

Subtracting Eq. 2.1-52 from Eq. 2.1-51 and defining

X = Xp - X, (2.1-53)

>
b
1"

yields

AX

F Ax + AF X, (2.1-54)
which can be further manipulated to yield

aAx = (F - AF)ax + AF x (2.1-55)

T

The second term on the right hand side of Eq. 2.1-55, AF X
which is a function of the true trajectory, is a driving term
of the Ax differential equation. Hence, the solution of
Eq. 2.1-55 using the variation of constants formula is

(F-aF)(t-t )
Ax(t) = e = ax(t)

L
. _f e F8F)T (aF % (1))dr (2.1-56)

t
o]

According to the definition of the canonical system, the true

and canonical systems have the same ini:ial condition,

A§(to) =0 (2.1-57)
Thus,

t
ax(t) = _f e(F-8F)T (\p xp(1))dr (2.1-58)
t

(o)
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Equation 2.1-58 yields the difference between the true and
canonical system trajectories as a function of time. As ex-
pected, if AF approaches 0 which implies that ||AF|| approaches
0 then Ax(t) is zero for all time; the true and canonical sys-
tem trajectories are equivalent. Our goal, however, is to
find the bounds on Eq. 2.1-58 using the techniques elaborated
in the beginning of Section 2.2. This analysis yields the
following inequality

to -1
[1AF || exp(-||F-AF]]) (-f Ix(e)]) < lax(t) ][]
t

t
o -1
< | |AF || exp(||F-AF}|) (J. Ix(t)]) (2.1-59)

t

ol
Dy

where AF and F are assumed to be piecewise constant matrices.

Equation 2.1-59 provides bounds on acceptable pertur-
bations to the true dynamics matrix such that the solution to
the perturbed solution lies within a neighborhood of the origi-
nal solution. Thus, Eq. 2.1-59 supplies a basis for the lirear
canonical system theory of Eqs. 2.1-2 to 2.1-9, where the prop-
erty of interest is that the solution of canonical system class,
§C(t), lie within some neighborhood of §T(t). The property of
interest that is being maintained is a common trajectory.
Hence, one can consider a closest canonical system which main-
tains the trajectory property only, to be a time-domain version
of equivalent systems. A further distinction is that the ca-
nonical system classes can include multivariable and time-
varying systems. Although two alternatives for bounding the

*The extension to the case where the true and canonical sys-
tems are inhomogeneous is straightforward.
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closest canonical system have been presented, where the one
based on matrix measure is the tighter bound, only the norm
based criterion is amenable to the final numerical solution
technique. This choice was made because the matrix measure
H(A) on L2 is only numerically defined for square matrices,T
hence it cannot generally be used to find the canonical con-

trol matrix GC

The relationship between the generic canonical system
theory presented thus far and other systems theory concepts
(e.g., controllability) arises when one considers the applica-
tion of canonical system theory to flying qualities analysis.
As implied in the previous discussion, a class of canonical
systems can be chosen for maintaining a number of properties
rather than just one. A second property, which the NFQ re-
search has concluded to be essential, is the controllability
of the true aircraft dynamics model. However, as is documented
in Chapter 4, controllability and/or reachability are typically
presented as binary results, a system is either controllable
or not. Hence, the detailed exposition of the relative con-
trollability theorem in Section 4.3. Section 2.2 of this chap-
ter describes how relative controllability is employed to de-
rive a closest canonical system which maintains the trajectory

and controllability properties of the true system.

2.2 RELATIVE CONTROLLABILITY

The use of the relative controllability theorem arises
naturally in the context of linear canonical system theory.
If the canonical system matrices differ from the true system
matrices,

_ max N _ max o
THLZ(A) = 777 A (5(A+A¥)) whereas ||A||L2 =770 A (AAx).
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(2.2-1)

H
"y
'
]

AF

AG = G - G (2.2-2)
then the differential equation of the canonical system becomes

x = Fx + Gu - AFx - AGu (2.2-3)
The last two terms of Eq. 2.1-30 can be interpreted as,

eh(x,u) = -AFx - AGu (2.2-4)
Thus, Eq. 2.1-30 becomes

x = FXx + Gu + ¢h(x,u) (2.2-5)

The form of Eq. 2.2-5 is identical to that of Eq. 4.3-9 in Sec-
tion 4.3. Consequently, the relative controllability theorem
can be used to determine under what conditions does Eq. 2.2-5
maintain the controllability properties of the true systenm,
Eq. 2.1-1. Controllability is ensured by computing & as a
function of ||AF|| and ||AG}|, the differences between the
canonical and true, system and control matrices. Squaring
Eq. 2.2-4 gives

(eh(x,u))2 = §T aFT AF X + 2§T NG AGu

+ ul AT aG u (2.2-6)

In Section 4.3 it is established that the relative controlla-

bility theorem requires that h(x,u) satisfy a Lipschitz condi-
tion, then taking norms of Eq. 2.2-6 yields,
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e?c2 < 11aF11? xTx + 1186112 wTu

+ 2 [1aF11%(x %) 11861123 (u - ) (2.2-7)
which can be simplified further to yield

< (LIAFIT 11xI1 + [1AGIT 1lul])? (2.2-8)

2.2
£ Co

eCy < LIaFLE TIxIT + [1aGI] [Jull (2.2-9)

Finally, to guarantee that the canonical system satisfies the
controllability properties of the true-linearized, eCo must
satisfy

-e,C, <eCl < e C (2.2-10)
where eOCo represents the maximum perturbation of the true
system, computed according to the relative controllability
theorem «f Sastry and Desoer. In Chapter 4, Eq. 4.3-12 con-
tains an explicit formula for computing the maximum perturba-
tion, soCo. Later, in Section 4.3, the relative controllability
theorem and the techniques for computing the controllability
measure, eoCo, are presented in detail. Chapter 3 of this
report discusses ithe use of the elements of canonical systems

theory as intrinsic flying qualities criteria.

2.3 NFQ ANALYSIS FORMULATION

In the preceding sections two major themes have been
developed: the use of canonical systems theory to determine an
idealized (low-order) aircraft dynamics representation and the
use of relative controllability as a flying qualities criterion.
This section will describe how these two concepts provide the

basis for an applied nonlinear flying qualities formulation.
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The role of canonical systems theory and relative
controllability becomes clear when one expands upon the analogy
with the equivalent system approach. 1If the canonical system
structure (e.g., block diagonal) is embodied in a new specifi-
cation, then the free paraneters of this structure and its
relative controllability wculd be specified to correspond with
desired pilot workload and pilot/aircraft performance in speci-
fic combat maneuvers and mission profiles. Hence, the second
step involves calibrating the canonical system parameters
(i.e., intrinsic flying qualities) through correlation with
pilot opinion (i.e., extrinsic flying qualities parameters) in
simulation and flight test. Then in application of the NFQ
formulation, the canonical system structure could be matched
with the true aircraft dynamics to verify compliance with the
specification. Verifying compliance involves three subtasks:
verifying fthat the magnitude of |]AF|| and ||AG|| are within a
range to permit a useful match, verifying that the relative
controllability measure lies within the specified tolerance,
and verifying that the parameters of the matched canonical
system lie within the tolerance prescribed.

2.3.1 Step One: Selecting a Canonical System Structure

The selection of a canonical system structure truly
requires a process in which all three steps of the NFQ analysis
are performed iteratvely until a useful canonical system struc-
ture is found. The iterative process is performed until a
canonical system structure is found that satisfies three ob-
jectives:

o The canonial system structure is reason-
able enough to permit an adequate canon-
ical system matching to take place,
i.e., matches can be found for which
| 1AF}| and | ]AG|| are small (relative to
the conditions set forth in Section 2.1.3)
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° The canonical system strn-iy: must con-

tain recognizable parameter: t can be
related to flying qualitics .. as to
quantitatively determine the .vecifi-
cation

° Finally, the canonical system must nom-

inally be controllable and must provide
a sensitive relative controllability
measure, i.e., a change in the canonical
system should cause changes in the rela-
tive controllability.

Meeting the first objective simply requires that the canonical
system maintain certain properties generic to the aircraft
dynamics. For example, if one chose a block-diagonal F matrix
for the canonical system structure, then those blocks should
correspond to dynamics modes that are approximately decoupled,
e.g., one block contains the longitudinal modes, the other

lateral-directional for maneuvers in the vertical plane.

The second objective is an extension of the first and
also provides compatibility with the current flying qualities
specification. The third-order example depicted in Eq. 2.1-33
reflects how elements of the canonical F and G matrices corres-
pond to particular modes of the aircraft dynamics. For example,
the parameters f1 through f4 correspond to the linear equation

N
q w
gonal canonical system F matrix. In that case the diagonal

coefficients Zw’ Z MQ' Another example would be a dia-
elements correspond to the modal inverse time constants present
in the aircraft dynamics. In either example, the parameters
of the canonical system correspond to measuarable parameters in
the true aircraft dynamics. Hence, quantitative specification

of ihe parameters can be determined from the true aircraft
data.

The third objective is obviously nec2ssary if the
relative controllability measure is to be of any use. However,
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the key point of the third objective is to search for a canon-
ical system structure which leads to a sensitive controllability
measure. Thus, the NFQ analysis can be used to detect small
changes in the controllability of an aircraft as it executes a
maneuver or is modified through the addition and jetison of

stores or the consumption cf fuel.

Note that experiments in execution of Step One of the
NFQ formulation -- selection of a canonical system structure --
are documented in Chapter 3 of this report where five canonical
system structures are developed. Further discussion can be
found in Section 3.2, where the rationale for selecting the
canonical system structures with regard to the first two objec-

tives above is explored.

2.3.2 Step Two: Correlating the Intrinsic and Extrinsic
Flying Qualities Criteria

Correlating the intrinsic and extrinsic flying quali-
ties is a step that necessarily involves pilot-in-the-loop
simulation and/or flight test. Although the resources of the
NFQ research effort did not permit any experimentation in this
area, it is envisioned that, as is the case of MIL-F-8785,
Revisions B and C (Ref. 2), pilot-in-the-loop simulations will
be a major source of data. However, some analytical specifica-
tion (i.e., without pilot opinion) of the intrinsic/extrinsic
flying qualities can be determined for simulated-pilot flight
modes in which an analytic model of a pilot is used and the
performance of the aircraft can be quantitatively measured,
e.g., the rms acceleration and altitude in terrain following.
Further discussion concerning the application of the NFQ analy-
sis to autonomous can be found in the recommendations for fur-

ther research in Chapter 5.
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2.3.3 Step Three: Computing the Canonical System Match
and the Relative Controllability Measure

The presentation of the canonical systems theory and
the relative controllability imply that the actual use of these
concepts requires little additional work. However, a number
of issues must be resolved regarding the form of true dynamics
that are to be used (e.g., closed-form nonlinear equations?)
in the computation of the closest canonical system. Further-
more, a strategy regarding the representation of the time-
varying components of the true and canonical systems is re-

quired.
The two aforementioned issues were resolved by:

° Choosing a six-degree-of-freedom simula-
tion with table look-up of the aerodynamic
data and automated linearization as the
tool which supplies the true dynamic
description of the aircraft

° Adopting piecewise time-invariant de-
scriptions for the method of represent-
ing the time-varying components of the
true and canonical systems.

Figure 2.3-1 depicts the process by which the time-varying
nonlinear dynamics are decomposed into piecewise linear time-
invariant dynamics, valid over the interval [ti,ti+l]. Since
each of the Fi and Gi are linear, the true system dynamics are
compatible with the linear canonical system theory described
in Section 2.1 and the relative controllability theorem des-
cribed in Sections 2.2 and 4.3.

The canonical system matching procedure then becomes
the process of matching each F,» G, pair independently at each
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Figure 2.3-1 Linear, Piecewise-Time-Invariant

Description of the Aircraft Dynamics

time increment. The collection of linear time-invariant canon-
ical systems Fc.’ GC. can then be taken as a group to represent
a linear pieceQEse gime-invariant representation of the air-
craft dynamics. Further details concerning the specific com-
putation that must take place can be found in Appendix B, which
describes the CAnonical System Evaluator (CASE) software and
in Subsection 4.3.3 which describes the computation of the
relative controllability index for the linear, piecewise-time-
invariant dynamics. The linear, piecewise-time-invariant
representation is a discrete-time approximation to the origi-
nal continuous dynamics. The discrete-time approximation
simplifies the required numerical computation and furthermore,
is the basis of all simulation, (i.e., all numerical integration
involves approximating continuous integration as a sequence of

discrete-time computations).

In the next chapter, candidate canonical systems
classes will be described and computation of the closest can-
onical system and the relative controllability measure for
sample large amplitude maneuvers will be presented.
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3. NONLINEAR FLYING QUALITIES
NUMERICAL RESULTS AND EVALUATION

The test and evaluation of the NFQ formulation pre-
sented in Chapter 2 was conducted with a nonlinear six-degree-
of-freedom (6-DOF) aircraft model with fully-coupled aerody-
namic data. The AFTI/F-16 aircraft was obtained and subse-
quently implemented in a generic 6-DOF simulation as the test
vehicle. The simulation is used as an integral part of the
canonical system analysis results that are presented in this
chapter. Section 3.1 decribes the overall canonical system
analysis process and explains the role of each tool developed:
the 6-DOF simulation and the canonical system evaluator. Sec-
tion 3.2 documents the canonical system classes (candidate
structures) employed in the flying qualities analysis experi-
ments. Section 3.3 contains highlights of the numerical re-
sults and the criteria produced for two sample maneuvers.
Finally, Section 3.4 concludes the chapter with an examination
of the relationship between the equivalent systems and canonical
systems methodologies, and speculates on the potential of using
previously collected pilot opinion data.

3.1 NONLINEAR FLYING QUALITIES ANALYSIS PROCESS

The canonical sysiems based flying qualities analysis
entails: the use of an accurate aircraft model and 6-DOF simu-
lation, the generation of control histories for large-amplitude
maneuvers, the coordination of the simulation and the canonical
systems numerical procedure, and the computation of appropriate

candidate flying qualities criteria. Figure 3.1-1 depicts the
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overall flying qualities analysis process and the relation-
ship of the two major software tools: the 6-DOF simulation,
described in Appendix A, and the CAnonical System Evaluator
(CASE), described in Appendix B.

The generation of large-amplitude maneuver control his-
tories is an integral part of the 6-DOF simulation. An optimal
control procedure was initially considered for generating the
maneuvers. Initialization of the optimization procedure, how-
ever, required an initial trajectory which was of the same form
as the final desired maneuver, e.g., wind-up turn. Consequently,
once the initial maneuver was generated (via a guidance law in
the 6-DOF simulation) the refinement of that trajectory was felt
to be unnecessary. Using the 6-DOF simulation to generate ma-
neuvers did mandate the addition of normal acceleration and roll

40



attitude autopilots, to augment the unstable open-loop AFTI1/
F-16 aircraft. This augmentation was necessary to permit the
use of the acceleration and roll attitude command guidance
laws used to generate the maneuver control histories. The
guidance laws are more fully described in Section 3.3.

The linearization depicted in Fig. 3.1-1 is performed
by the 6-DOF simulation at points in the trajectory specified
of f
at run time. The linearized data, contained in the 5% and 50
matrices are then used by the canonical system evaluator to
compute the closest canonical system.

The lower left element of Fig. 3.1-1, "Mathematical
Structure", is the step in which one selects the canonical
system class, i.e., the free parameters of the system matrices
Fe and Ge which are to be matched to the true linearized ma-
trices computed in the 6-DOF simulation. Section 3.2 of this
chapter describes the rationale for selecting a canonical sys-
tem class through the description of five canonical system
classes which have been permanently implemented in the CASE
software.

Once the linearized matrices have been obtained and
the canonical system class selected, the parameters of the ca-
nonical system class are optimized to produce the closest canon-
ical system, i.e., matrices FC and GC. The closest canonical
system matrices and the respective norms ||AF|| and ||AG|| are
then used to evaluate the intrinsic flying qualities, which per
Chapter 2 are the relative controllability index and the norms
|1aF|| and |]|AG||. As a final appraisal the true trajectory
and a perturbed trajectory generated with the canonical system
are compared. This comparison establishes the performance of
the closest canonical system in achieving a trajectory which
lies within a neighborhood of the original trajectory.
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31,2 CANONICAL SYSTEM CANDIDATES

The canonical system candidates are representative
canonical system classes chosen for the numerical investigation
of flying qualities. In accordance with the philosophy de-
scribed in Chapter 2, the classes are chosen for simplicity,
faithfulness to the aircraft model, and the facility to yield
flying/handling qualities criteria. The structures presented
in this section satisfy these constraints and range from the
purely virtual, i.e., the canonical system represents a non-
existent, ideal structure, to the aircraft specific, in which
decoupling of lateral and longitudinal motion is enforced.
Each of the classes mentioned in this section has iheen imple-
mented in the CASE software and can be selected by the user

via input flags (see Appendix B).

3.2.1 Class I: Upper Triangular

The upper triangular canonical system class has an
upper triangular system matrix. It is attractive because the
matrix diagonal contains the system eigenvalues and each state
is less coupled than its forerunner until finally the last
state 1is independent. The generic form for Class I is thus

1,1 Fl,2 e e e a e e e F1,12

F12,12]
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Note that the specification of this canonical system class
says little about the nature of Ge' The specification of Ge
requires knowledge of the available control surfaces for the
aircraft under investigation. Furthermore, the specification
of Ge is sensitive to the nature of the specific states in the
state vector. Ge for Class 1 was formed for the AFTI/F-16
model employed in the current investigation and reflects the
control surface configuration of the aircraft. Hence, Ge is

rgl 8) 8y B, &5 Bg 87 B3 8 W
0 0 g, 8, 0 0 0 0 0
81 g3 0 0 0 0 gy, g5 8¢
o o 0 0 0 0 0 0 0
o o0 0 0 0 0 0
G,=|0 0 0 0 0 0 0
0 0 0

817 818 819 820
8); 83 0 0 0 0 gy,
8y, B25 8 87 O
o 0o o0 0 0 0 0

0 0 0 0 0 0 0

S O O O ©oO o o
o O O o O o o

(3.2-2)
where the state and control vectors consist of,
A T
X = [u, v, w, x,y,2,p,q, 7r, ¢, 6, ] (3.2-3)
and
ud (s 5 S o) Bes Sy Buiry Buy Scrs 6en]l¥
= TEF® “LEF® “VC® "R’ "FA® "HA® "H’ "SP®’ “SB
(3.2-4)
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The definition of the state and control variables in Eqs. 3.2-3
and 3.2-4 can be found in Appendix A. The form of Ge> however,
will be different if the state ordering implied by Eq. 3.2-3

is changed.

The state order has profound implications for the
form of Fe as well. The upper triangular form implies sub-
stantially different dynamics if X{s ... Xjo represent dif-
ferent physical quantities, e.g., body axis velocities u,v,w.
Although the free parameters of Fe are adjusted such that F.
best approximates the true-linear dynamics, the closest upper
triangular form will necessarily differ for various state order-
ings. Thus far, the state ordering found to produce the most
rapid convergence to the closest canonical system is:

X & (u, v, w, P, 4, r, X, ¥y, z, ¢, 0, w]T (3.2-5)

Hence, the final form of Ge is topographically different than
that presented in Eq. 3.2-2, although mathematically equivalent.”

A final item to note is that for Class I, Fe contains
n*(n+l)/2 or 78 free parameters and Ge has 28 free parameters.
Furthermore, the number of free parameters for both Fo and Ge
increase if control augmentation or flexible body mode states
are added to the state vector. Two methods predominate in the
selection of the canonical system classes; either additional
diagonal parameters are added to form an n+m dimension matrix,

or the additional rows and columns are set to zero.

*Appendix B discusses the state and control reordering and
the transformation of the true linearized state and control
matrices.
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3.2.2 Classes Il and I11: Decoupled, Two Block
Longitudinal-Lateral

The Two Block Longitudinal-Lateral Canonical System
class more closely represents an approximation of aircraft
dynamics than Class 1. The decomposition of the dynamics
matrix into two 6x6 block diagonal matrix recognizes one of
the common simplifications of aircraft dynamics. In addition,
the Class II and I11 control effectiveness matrices also apply
longitudinal-lateral decoupling: the free parameters are
arranged such that a control deflection can affect either the
longitudinal or lateral dynamic states, but not both. The
generic mathematical 1crm for Classes II and III is;

+ G, u (3.2-6)

1
1]
'
1
'
- - - -— -—
]
'
'
i<

F

lat |

where Flong and Fi, ¢ are 6x6 matrices with 36 free parameters

each. The nominal state vector constituents (i.e., ordering)
for Eq. 3.2-6 are:

§é [Ll, w, q, 69 Z, X, V, p, I, ¢) ‘bs Y]T (32'7)

The control effectiveness matrix for Classes II and II is a
13 x 9 matrix and has the generic form;
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where the 13th row represents the pitch augmentation state and
the control vector constituents are:

a 16 5 8.y Bcps Sans Sums Sras Boxs Oolb

u = TEF’ “LEF’ “H’ “SP’ "SB’ "VC’ "HA’ "FA’ "R

(3.2-9)

The {orm of G, in Eq. 3.2-8 and state and the control

vector constituents defined in Eqs. 3.2-7 and 3.2-9 imply that

the 12 frce parameters of G, correspond to the 12 most signif-

icant aerodynamic ccefficients for the control surfaces. For
example, gg can be lefined as

~ QS -
gs = 22 C, (3.2-10)

6y IM,a
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In the next section of this chapter, the numerical results
will reveal that the form of G, in Eq. 3.2-8 produces very
close canonical system matches for the two maneuvers investi-
gated. The dynamics however, still represent a departure from
traditional dynamics. Although longitudinal-lateral decoupling

is present, the all nonzero nature of Fla and F can produce

a closest canonical system which is quit;:diffe:éxggthan con-
ventional linear dynamics. The possibility that each of the
longitudinal state derivatives can be a function of all the
longitudinal states and similarly, each of the lateral states
can be a function of all the lateral states is depicted by the
symbolic block diagram in Fig. 3.2-1. Note however, that
Fig. 3.2-1 does not imply that all the state derivatives can
be functions cf the control forces and moments, Eq. 3.2-8

limits those possibilities.

Classes II and III do differ in the treatment of addi-
tional control augmentation states. The Class Il canonical

systems simply adds additional rows and columns that are all

zero. Class 1II provides additional free parameters in the

f i = U l b, Y ————] — v
U, W ———ee—i=y — W | e = p
—— = q | [ . -

9 ™1 LonGiTuDINAL | LATERAL
DYNAMICS . DYNAMICS )
X, 7 it et (} ' Y o
¢ g NTROL =
ONTROL o R e i
7 ONTROL v
MOMERTS ——1 "k | MOMENTS —™ =i

Figure 3.2-1 Canonical System Block Diagram:

Classes II and III
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dyanmics matrix Fe for each control augmentation (or flexible
body mode) state. However, in the subsequent controllability
analysis, the additional rows and columns of the Class II ca-
nonical system matrices must be ignored otherwise the Class II
system would always be uncontrollable.

What is being described is an order reduction tech-
nique in which the canonical system, although it takes on the
state dimensions of the full nonlinear model, is only signifi-
cant in the fundamental twelve kinematic states. Consequently,
the Class III approximations for two very different aircraft,
e.g., one with high-order stability augmentation and one with-
out, hence with two different total number of states would have
the same number of free parameters in the Class III approxima-
tion. The flying qualities criteria, e.g., relative controll-
ability, for the two aircraft would only be computed on the
twelve kinematic states of the respective canonical system
matches.

3.2.3 Class IV: Four Block Diagonal,
Longitudinal-Lateral

The 4-Block Diagonal, Longitudinal-Lateral Canonical
System contains a refinement of the Classes II and III canoni-
cal systems. Classes II and IIl were refined through t!: re-
moval of free parameters in Flat and Flong that are not physi-
cally present. Thus, Class IV more closely represents the
traditional linear aircraft dynamics (e.g., Eqs. 5.13,18 to
5.13,20 in Ref. 55). The major advantage of the Class IV
canonical systems is the small number of free parameters in
the dynamics matrix; 25 when there are no free parameters for
the augmentation states. The generic mathematical form for

the Class IV canonical system is
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The state constituents are defined as,
T
X4 [u, w,q, 6, X, 2, vy p, r, 0, ¢, Yyl (3.2-16)

The canonical control effectiveness matrix and the control
vector constituents are identical to those for Classes II
and III (cf., Eqs. 3.2-8 and 3.2-9).

The symbolic diagram in Fig. 3.2-2 illustrates the
functional dependence of the state derivatives on the other
states and controls. The body velocity and rotation state
derivatives are formed by equations similar to the full force
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Class 1V
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and moment equations of the 6-DOF dynamics (e.g., Eq. B.2-1
and B.2-3 in Appendix B). The euler angles and inertial posi-
tion state derivatives also take on a functional dependence
similar to the 6-DOF equations (e.g., Eqs. B.2-2 and B.2-4 in
Appendix B). As in the case of Class II1, control augmentation
states in Class IV are treated as additional free parameters

on the diagonal of Fe.

The diagonal submatrices F2 and FQ when combined with
the canonical control matrix structure, produce a uncontroll-
able canonical system regardless of the parameter values.
This fact is borne out by Fig. 3.2-2 wherein it is apparent
that the states, x, z, ¢, and ¢y are not affected by the con-
trols. Nevertheless, the Class IV canonical can be used in
the controllability analysis when the submatrices Fl and F3
alone are evaluated. Thus, the longitudinal and lateral sub-
systems formed by submatrices F1 and F3 represent the dynamics
used in the computation of the relative controllability cri-

terion to be presented in Section 3.3.

3.2.4 Class V: Fully Diagonal

One of the most appealing canonical system classes is
the pure diagonal system, a system characterized by a pure
diagonal dynamics matrix. Each mode (pole) in the Class V
canonical system is independent and decoupled, hence repre-
senting an ideal aircraft dynamic (from a theoretical control
configuration viewpoint) in which every mode can be indepen-
dently adjusted. The generic form for the Class V canonical

system is:

----- Xx+G_u (3.2-17)
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where Fkin is a 12x12 diagonal matrix of the kinematic states,

: )
£

o £, (3.2-18)

12

and Faug is an mxm diagonal matrix of the m control augmentation
states,

= . (3.2-19)

aug

The order of the twelve kinematic states within x is unimpor-
tant because of the independence of each mode. The control
effectiveness matrix for Class V canonic system is as simple a
control matrix conceivable, yet still providing controllability
of the overall system. The concept is to ensure that a con-
trollable system would ensue if the diagonal parameters (and
hence ei§envalues) of the closest Class V canonical system are
nonzero.  Although a diagonal control eftectiveness would be
ideal, the non-square matrix for the AFTI/F-16 model (12x9

*Ensuring that GeGeT is a diagonal matrix of the free parameters
is also required.
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without augmentation) precludes that possibility. The generic
form finally selected is:

[ 0 0 0 0 0 0 0 gy g2-
0 0 g5 g, 0 0 0 0 0
85 8 0 0 0 0 g 0 0
gg & O 0 0 0O 0 0 0
210 811 0 0 0 0 0 0 0
I

E14 5815

0 0 0 0 0 0 g O 0
0 0 817 £13 0 0 0 0 0
0 0 0 0 819 8¢ 0 0 0
0 0 0 0 0 0 gy 0 0

L 0 0 8y) 83 0 0 0 0 OJ

(3.2-20)

where the state vector constituents are (as for Class I)

X é [U) vV, W, X, Y, 2, P, qQ, ¥, ¢, 8, w]T (32“21)
and the control vector constituents are (also as for Class 1)

8 6 ) 6

]T
SP’ “SB

(3.2-22)

8 ¢ 6 6

oy ver %r» %ra’ %Har Ow

TEF’ "LEF’

The Class V control effectiveness matrix conventionally models
the control surfaces as pure force and moment generators (i.e.,
driving accelerations). However, unconventional terms are in-

cluded in which the flaps (6 6 ) drive velocities and

TEF’ "LEF
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the moment generating surfaces (GVC’ GR’ GFA’ 6HA) also gen-
erate rotation rates. Figure 3.2-3 depicts the relationships
of the states and state derivatives of the Class V canonical
system. The diagram reveals why it is necessary to create non-
physical control coefficients to drive the inertial velocity
and Euler angle rates. If these were not driven, the Class V
system would always be uncontrollable, regardless of the closest
canonical system match, hence, precluding the use of the rela-
tive controllability measure.

In summary the Class V, purely diagonal canonical
system exemplies an abstract system structure almost completely
lacking a physical basis. However, it is easily the most trac-
table of all the canonical system classes considered thus far,
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Figure 3.2-3 Canonical System Block Diagram:
Class V
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with only 12 (plus nonzero augmentation) parameters in the
dynamics matrix and 23 parameters in the control effectiveness
matrix. The relatively few parameters enhances the potential
for flying qualities criteria directly based on the free param-
eters of Fe. Nevertheless, the ultimate usefulness of Class V
depends on its ability to match a given, true-linearized dy-
namics matrix. The comparative performance of the candidate
canonical system classes in matching the true dynamics is the

subject of the succeeding section.

3.3 NUMERICAL RESULTS

The numerical results presented in this section pertain
to two large-amplitude maneuvers. The canonical systems analy-

sis methodology was applied to each maneuver and evaluated for:

® Performance of the closest canonical
system with regard to the norms | |AF] |
and | |AG||and the perturbed trajectory,
flx, u + 6u, )

° Sensitivity of the relative controllabil-
ity index over the trajectory and the
correlation with the quality of canonical
system match.

The criterion evaluates the effectiveness of the closest caaon-
ical system and its distance from the linearized system. The
closest canonical system is considered a good match if the
trajectory of x(f(x, u+éu, t)) lies within a neighborhoed of
x(f(x, u, t)) for identical initial conditions. The relative
controllability index is then computed and its correlation
with the magnitudes of |]AF|| and ||AG|| and the difference in
the true and perturbed trajectory (6x(8u)) evaluated. The
goal was to observe how well the relative controllability index

gauged the canonical system approximation of the true dynamics.
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3.3.1 Sample Maneuver Description

The sample maneuvers which were employed in the nu-
merical evaluation were:

o A wind-up turn at approximately Mach .9
and 10,000 feet altitude, evaluated for
30 seconds

° A rolling-reversal at Mach .9 and
10,000 feet altitude evaluated for
7 seconds.

The wind-up turn was generated by commanding a normal
acceleration,

a, = g cos y/cos ¢ (3.3-1)
which maintains a turn in the horizontal plane. The effective
turn rate is,

{ = a_ sin ¢/v_ (3.3-2)
As Vi decreases, the required angle of attack continues to
increase: a non-steady flight trajectory. Graphs of signifi-
cant variables of the first 20 seconds of the wind-up turn,
from here on labeled maneuver I, are contained in Fig. 3.3-1.
The angle of attack is not increasing in this trajectory be-
cause a steady-state error in the acceleration autopilot pre-
vents the aircraft from achieving the acceleration stipulated
by Eq. 3.3-1. Thus, the turn is beginning to degenerate into
a spiral dive, the attendent increase in negative flight path

angle reducing the normal acceleration required to maintain
the turn.

The second maneuver investigated, Maneuver 11, is a
rolling reversal. At t=1 second the aircraft begins a rapid

56



2_0 Ju 1 1 1 L L 1 3
w
o))
— LONGITUDINAL
Z 1.0 - -
O . /
< s I
A e e \ ----------- ———
w :
- i
w v
g e LATERAL i
g
;i(’ 2.0 - NORMAL -
g ¢
o

-4.0 T T T g T T Y

0.0 2.5 S 7.9 10.0 12.5 15.0 HZkS 0 22.45
TIME (sec)
—a) ¢ O"Lﬁ 1 1 1 A | 1 i g
Q
T
- 3.0 _f L
7 : ¥
o |'
W |
06 2.0 - | =
v I
Q ﬁl’
S— 1.0 -'h'
— . f ifj |
'4 |
W /
O 1, §. & s lelRsmtasemasrossosasese e T L
w |
-
o f
2 [
< -1.0 'If B — T Fijg] T T T T T
0.0 2.5 5 =5 10.0 12-5 15.0 17.5 ch- 2Z-5

Figure 3.3-1

TIME (sec)

Maneuver I: Wind-Up Turn
(First 20 seconds)

57



FLAPS & HORIZONTAL TAIL (deg)

CONTROL DEFLECTION (deg)

! 0 L 1 | i 1 1 1 it =
0.0 - e L
-1.04 \ -
TRAILING & LEADING
-2.0 4 EDGE FLAPS L
-1.0 4 L
A.CH -
i HORIZONTAL
-5.0 - o o // TAIL .
6.0 - ; S, .
-7.0 T - ’r T T T T T T
0.0 2.5 5.0 7.5  10.0 12.5 5.0 17.5 20.0 22
TIME (sec)
2'0 . 1 1 l 1 . e
RUDDER
0.0 -é, _,L‘.' T T -
ool T DIFFERENTIAL !
e TAIL
-4.0 A -
FLAPERON
/
6.0 1 -
| |
-8.0 +— 17— —r— T T T T T ™ 1

0.n e 5.0 7.5 t0.0 12.5 1.0 17.5 20.0 22.

TIME (sec)

Figure 3.3-1 Maneuver 1I: Wind-Up Turn
(First 20 seconds) (Continued)

58

.5
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AIRSPEED (ft/sec)

AND DYNAMIC PRESSURE
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pull-up followed by a 360 deg roll initiated at t=1.5 sec.
Figure 3.3-2 contains simulation traces of the rolling reversal.
Maneuver 11 is a more severe nonlinear maneuver for the canon-
ical system analysis because of the high rotational rates in-
volved, the short duration of the roll rate pulse, and the
excitation of the Dutch Roll mode (the lateral dynamics were
not augmented to improve the Dutch Roll damping, hence the
underdamped response in sideslip).*

3.3.2 Maneuver I Canonical System Analysis

The canonical systems analysis of Maneuver I included
Classes II1 and IV. Figures 3.3-3 and 3.3-4 contain graphs of
the ratios ||AF||/]|F|I|l and ||AG}]/||G|| versus time. The
relative controllability versus time is also presented.

The uppe- plots of both Figs. 3.3-3 and 3.3-4 contain
curves of che norms of the differences between the true canoni-
cal systems for both the F and G matrices. Note the different
scales for both ||AF}| and |]AG|| and that the curves for ||AG]]|
are identical in both figures.T The curves of ||AF|]| and ||AG]]|
are normalized by the norms of F and G to yield a curve which
is indicative of the suitability of the match. The bounds on
| 1ax(t) || derived in Chapter 2 suggest that ||AF|| be as small
as possible while the ratio ||AF||/||F|| should be less than
one. The Class IIl canonical system match (Fig. 3.3-3) exhibits
this property for all of trajectories except between approxi-
mately 12 and 20 seconds. The Class IV canonical match maintains

a ratio just less than one throughout the maneuver. Although

*However, both maneuvers were executed with a unity feedback
of roll attitude in the roll channel and a three gain one-
state acceleration autopilot in the pitch channel.

tRecall that Classes I11 and IV have the same structure for the
canonical control effectiveness matrix.
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the two canonical system matches meet the analytical require-
ments for generating a trajectory near the true perturbed dy-
namics trajectory, the smaller values of the dynamics matrix

ratio and the apparently greater sensitivity (i.e., greater
dynamic behavior) of the Class III match suggest that the Class 111
structure is preferable to the Class IV. The Class IV match
exhibits a dynamic matrix ratio which is nearly constant over

the trajectory and is close tc one. However, a careful invesrcti-
gation revealed that the behavior of the Class III and Class IV
matches actually reveals that the Class IV structure is superior.

The changes in the Class I1I match have been traced
co changes in the heading angle during the wind-up turn. As
the aircraft changes heading (initial condition is zero degrees),
the position state derivative X is no longer a function of u.
Instead y becomes a function of u since the flight path becomes
aligned with the inertial y axis as the heading approaches
90 degrees. However, the position state decoupling in the
Class 111 structure, i.e., X and z are in the longitudinal
block and y is in the lateral block of Eq. 3.2-6, prevents the
y inertial position derivative from ever being a function of u.
Hence, the Class IIl structure is only valid for small heading
angles about 0 or *180 degrees. A similar problem occurs when
there are significantly nonzero roll angles; in that case y
should become a function of the normal body axis velocity w as
well as the sideslip velocity v, however, Eq. 3.2-6 precludes
this. This effect is much smaller than the heading angle
dependence because w and v are small compared to u for the

angle-of-attack magnitudes present in Maneuver I.

The Class IV canonical system structure also mandates
longitudinal-lateral decoupling. However, the Class IV struc-
tures also decouples the position states completely, i.e., the
diagonal submatrices in Eqs. 3.2-13 and 3.2-15. Hence, the
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parameters flO’ fll’ and f24 in Eqs. 3.2-13 and 3.2-15 repre-
sent the uncoupled modal values of the position states directly
without dependence on u, v, or w. Thus, when the heading angle
approaches 90 degrees, the x position mode (flo) approaches
zero; the velocity of the aircraft is normal to the x inertial
axis and no growth in that state should occur. Similarly,
when the heading angle is near 0 degrees or 180 degrees the
modal value of x (flo) is similar but opposite in sign; when

y = 0 degrees X should be increasing but when y = 180 degrees,
X should be decreasing. Consequently, the increased dynamic
behavior of the Class III canonical system match versus the
Class IV match and the fact that the Class III ratio exceeds
one during part of the maneuver indicate that the Class IIIl is
less suited than the Class IV structure for matching the dynam-

ics of a wind-up turn.

Finally, note that ||AG|| appears to be monotonically
increasing. This can be traced to a dependence on ug. Because
the airspeed is approaching Mach 1, the tendency of both |]|AF]]
and |]AG|| to increase for Class IV case may be due to the
onset of transonic aerodynamics. In general, the small value
of the control effectiveness matrix ratio indicates an excellent
match. However, it must be noted that since the AFTI/F-16
model has minimal control cross-coupling (see Eqs. A.2-11 to
A.2-16) the canonical control matrix in Eq. 3.2-8 has a struc-
ture almost identical to the true G matrix. The most signifi-
cant cross-coupling in AFTI/F-16 model is in the leading and
trailing edge flap deflections; however, Eig. 3.3-1 reveals

that during Maneuver I the flaps are almost always zero.

3.3.3 Maneuver II Canonical System Analysis

Figures 3.3-5 and 3.3-6 contain the results of the
Maneuver Il canonical systems analysis. Once again, plots of
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the norms of the closest canonical system and the relative

controllability index are included. The rolling-reversal an-
alysis provides some distinctively different results. First,
| 1aG|| has a large excursion during the most coupled portion
of the maneuver, (when p, q, and r are at a maximum). Thus
indicating the inadequacy of the longitudinal-lateral control
decoupling of the canonical control matrix to model the true-

linearized control matrix.

The dynamics matrix norms ||AF|]| for both canonical
system classes are remarkably different. Not only are the
magnitudes different (unlike the maneuver | analysis) but the
Class II1 canonical system changes more during the trajectory.
However, the trajectory for the rolling reversal maintains a
near zero heading angle throughout the maneuver, thus the
Class II1 does not suffer from the inadequacy just described
in the Maneuver 1 analysis. Hence, the greater dynamic behavior
and smaller dynamics matrix ratios for the Class III match
versus the Class IV match are welcomed. The changes in ||AF]|
in Fig. 3.3-5 appear to track the underdamped Dutch-roll oscil-
lation excited in this maneuver (see Fig. 3.3-2). Although
the Class IV canonical system structure contains elements that
can model the Dutch-roll mode (i.e., Eq. 3.2-14) apparently
| |AF|| is insensitive to these changes. Hence, one finds that
the more abstract canonical system structure (Class 111) 1is
more sensitive to the time-varying dynamics than the structure
(Class 1V) that more closely approximates the linearized-

dynamic equation structure.

The relative controllability index profiles exhibited
in Figs. 3.3-5 and 3.3-6 reflect the ||aF|| and ||AG|| activity
as expected. Recall that the relative controllability index
is a function of both ||AF|| and ||AG|| hence, although the
Class IIIl and Class IV system matches have distinctly different
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dynamic matrices, the fact the canonical control matrices are
the same softens the differences in cCO. The Class IV analysis
does exhibit a smoother curve than the Class IIIl analysis, the
important difference is the average magnitude of eC . The
larger eCO for tne Class IIl canonical system indicates less
sensitivity (or vice/versa more controllability) with respect
to the Class IV system. Thus, the Class IIl canonical system
better preserves the controllability properties of the linear-
ized system, and thus, measures the controllability of the non-
linear aircraft dynamics.

3.4 CONCLUDING REMARKS

This chapter has presented a brief suite of numerical
results obtained through the application of the NFQ formulation
described in Section 2.3. Although the number of experiments
was restricted, there is sufficient data to conclude that the
canonical systems technique provides a multivariable, time-
domain equivalent systems methodology. The same questions
that arise in the application of equivalent systems applies to
the canonical systems based, NFQ analysis. The most persistent
issues are:

° Upon what basis is a canonical (equiva-
lent) system structure derived and which
parameters are to be free in the matching

process
° What values of the matching process norms,
e.g., ||aF|| and |]AG|| for canonical

systems, imply a satisfactory match.

The first issue was directly addressed in the statement of
objectives for the NFQ formulation outlined in Section 2.4.1.
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The results obtained to date have indicated that the (Class 111
and Class IV canonical systems meet the objectives of Sec-
tion 2.4.1.

The second issue, the relevance of the magnitudes of

| |aAF|] and ||AG||, can only be resolved through the empirical
investigation of the ratios ||AF||/}I|F|] and |[AG||/}IG]||, the
magnitude of the trajectory deviation ||ax(t)|}| for each maneu-

ver, and the sensitivity of pilot opinion to these deviations.
Although an analytical approach to this problem is discussed
in Sections 2.1 and 2.2 where upper bounds for |jax(t)|| as a
function of |[}|AF{|. ||aG||, |I|F]|, and ||G|| are derived, the
magnitudes of |]ax(t)|| observed were much smaller than the
bounds. The empirical results suggest that a high quality
match is obtained, i.e., ||ax(t)||/||x(t)|]| is less than 10%,
when | |AF||/)IF{] and ||AG||/]|G|| are 25% or less. Further-
more, this matching performance is obtained when all the eigen-
values of both F and FC have negative real parts (at each in-
terval). The results of the Class III and IV canonical system
analyses reveal that the closest FC is not always completely
stable. However, since FC contains completely decsupled sub-
matrices, one need only apply the rule to the stable subspaces
ot the canonical system. Hence, a subset of x(t) which in-
cludes only the stable modes is evaluated for determining the
quality of the canonical system match. Note that is consistent
with the order-reduction characteristics that one may wan:. to
enforce, e.g., when augmentation states are modeled as decoupled

modes in the canonical system.

A further issue which requires additional investiga-
tion, is the reason ftor the poor quality of the canonical sys-
tem match for the (lass IV structure. At this time it 1is
unclear whether the relatively large magnitudes of ||AF|| and

| |1aG]| are the result of poor convergence in the optimization
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procedure of if the values are the true minimums. If the
relatively large magnitudes of ||AF||] and |]|AG|| are the true
minimums then what is the cause and is it indicative of poor
flying qualities in the modeled aircraft (a conclusion often
drawn when equivalent systems exhibit a poor match)? It is
wise to recall from the Chapter 2 discussion that a zero value
of ||AF|| need not exist because the choice of free parameters
may preclude the possibility that F - FC = 0. However, the
quality of the canonical system match for the Class IV systems
did change with the maneuver, in fact it exceeded the Class III
system performance in some portions of the wind-up turn. This
limited result suggests that the choice of a canonical system
structure can be maneuver dependent, hence that it is possible
to specify a canonical system structure that is the most sen-

sitive to the aircraft dynamics in a specific maneuver.

The strongest conclusion to be drawn from the results
presented in this chapter is that the computability of the
canonical system methodology has been demonstrated. Thus,
Step 3 of the NFQ formulation outlined in Section 2.3.3 has
been satisfied. The resulting computer software tool that
solves the canonical system matching problem and computes the
relative controllability index is a finished product, ready to
be used in additional NFQ experiments.

The numerical results in this chapter have made a
strong case for two concepts developed in the NFQ research;
the use of canonical system theory to provide what is in
effect an extended equivalent system methodology and the use
of a relative controllability measure as a flying qualities
criterion. However, the two concepts rely on local (linearized)
results of nonlinear analysis and system theory. Hence, the
applicability of more advanced, i.e., global, nonlinear analy-

sis and its ability to overcome the limitations encountered
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with the NFQ formulation issues remain to be resolved. The
next chapter addresses these issues through an examination of
leading techniques in nonlinear analysis. In addition, Sec-
tion 4.3 contains a complete description, i.e., definition,
proof, and numerical procedure, for the relative controllability
theorem used to supply the results presented in Section 3.3.
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4. REVIEW OF RELEVANT TECHNIQUES IN
NONLINEAR SYSTEM THEORY

Nonlinear system theory, in this report, denotes the
body of mathematical research applicable to systems governed
by nonlinear ordinary differential equations. Although re-
sults in nonlinear system theory have been limited, the theory
has drawn heavily from all areas of pure mathematics, e.g.,
functional analysis and differential geometry. The present
chapter will document the research results uncovered in a com-
prehensive literature search for techniques applicable to fly-
ing qualities analysis. An overview of the literature search
and a categorization of nonlinear systems is provided in Sec-
tion 4.1. Section 4.2 describes the system-theoretic concepts,
e.g., reachability, for which significant progress has been
made in deriving a computable test. Section 4.3 then discusses
the relative controllability theorem of Sastry and Desoer that
was used to generate eCo in the previous chapter. (Since the
following discussion is laden with numerous symbols, a glossary
has been provided at the end of this report.)

4.1 OVERVIEW OF NONLINEAR SYSTEMS THEORY

This section describes the significant nonlinear sys-
tem techniques revealed by the literature search. The presen-
tation of this diverse material requires the categorization of
nonlinear system theory research and the description of the
subsets (i.e., classes) of nonlinear systems prevalent in cur-

rent research.
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4.1.1 Categorization of Nonlinear System Theory

Nonlinear system theory properly encompasses an area
of applied mathematical reserach which emphasizes the search
for nonlinear analogues to linear system-theoretic concepts.
Note that this description by no means includes all techniques
associated with nonlinear analysis, nor does this definition
include the specialities of optimal control, stability theory
or frequency-domain nonlinear, feedback system analysis. How-
ever, the literature search for the NFQ program took a broad
perspective, hence it included an examination of relevant
techniques from nonlinear dynamics analysis, nonlinear system
theory and modern control theory. Consequently, a major cate-
gorization of nonlinear system theory is by system-theoretic
concept and related fields of study (e.g., optimal control).

A further subtlety of nonlinear system theory is the
dependence of specific approaches on a core set of tools and
concepts from pure mathematics. Specifically one finds that
functional analysis, differential geometry and Lie algebra are
especially popular in nonlinear system theory characteristically
they produce different tests for the given system-theoretic
concept. Thus, an additional categorization of nonlinear sys-
tem theory is based on the primary mathematical tools employed.

Finally, note that nonlinear systems is an extremely
broad class of dynamic systems. Many researchers have responded
to this unwieldy class of systems by concentrating on specific
subsets of nonlinear systems, e.g., polynomic, which are both
more manageable and more common in applications. Thus, the
third categorization of nonlinear system theory is with respect
to the specific classes of nonlinear systems for which a par-
ticular piece of research was derived.
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In summary, there are three categorizations of non-
linear system theory, in descending order of priority. They
are;

o The system-theoretic concept under in-
vestigation, e.g., controllability,
feedback control

° The mathematical tools which the re-
searcher draws upon, e.g., Volterra
Series

° The the class of nonlinear systems for

which the result was derived, e.g.,
bilinear systems.

Figure 4.1-1 summarizes the results of the nonlinear system
.

v

theory literature search into the aforementioned categories.’
Because of the extensive amount of research concerning stabil-
ity, feedback control and optimal control, key references for
these areas are an extremely small sample of the available work.
Descriptions of the system-theoretic concepts can be found in
subsequent sections of this chapter. A discussion of the
classes of nonlinear system identified in Fig. 4.1-1 closes

this section.

4.1.2 C(Classes of Nonlinear Systems

The classes of nonlinear systems tabulated in Fig. 4.1-1
are the principal ones to which significant research has been

devoted. The classes are not necessarily mutually exclusive,

*Although reachability and observability are dual properties
in linear system theory, i.e., proving one property provides
a proof for the other, this duality does not extend to non-
linear systems. For example a nonlinear system may be linear
in control but have a nonlinear measurement equation. Hence,
results in reachability and observability are considered sep-
erately in Fig. 4.1-1.
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SYSTEM

TI MATHEMATICAL APPLICABLE MAJOR
nggggnc TOOLS SYSTEMS REFERENCES
QUASIBOUNDED. C° 17, 25, 26
— FUNCTIONAL ANALYSIS—-E
INVERTIBLE 17, 2, 23, 24
REACHABILITY/
CONTROLLABILITY ANALYTIC 16, 19, 27.32
DIFFERENTIAL GEOMETRY/ l
LIE ALGEBRA BILINEAR 19, 49
POLYNOMIC 19, 43, 44, 59, 60
QUASIBOUNDED, C° 17, 25, 26
FuucnouALANALvms——-{::
INVERTIBLE 17
OBSERVABILITY/
CONSTRUCTABILITY ANALYIIE 1320, 28
DIFFERENTIAL GEOMETRY/ BILINEAR 19, 49
— RA
LEFAGLED POLYNOMIC 19, 43, 59, 60
FACTORABLE 19, 41
— DIFFERENTIAL GEOMETRY ——— ANALYTIC 19, 27, 47
REALIZATION/
IDENTIFICATION
LINEAR-ANALYTIC 18, 19, 33-42
VOLTERRA SERIES
BILINEAR 19, 49
POLYNOMIC 43, 46, 48
FREQUENCY DOMAIN/
COMPLEX ANALYSIS RATIONAL, CAUSAL  16.13, 81
STABILITY LYAPUNOV THEORY 16, 62
HOPF BIFURCATION 16
FREQUENCY DOMAIN/ 16, 13, 61
COMPLEX ANALYSIS
?gﬂ?ﬁgf ———— GEOMETRIC SYSTEM THEORY 50, 54, 57
L ALGEBRAIC SYSTEM THEORY 52
A FIELD OF APPLIED 63
SPTIMIZATION MATHEMATICS IN ITSELF
Figure 4.1-1 Nonlinear System Theory Overview

nor are most of them subsets of one another.

In order of de-

creasing generality, the classes of nonlinear systems encoun-

tered in the literature search are:
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° Smooth Systems

° Analytic Systems

(] Linear-Analytic Systems
) Polynomic Systems

° Bilinear Systems

° Factorable Systems.

Prior to definitions of these system classes, note
that the applicable definition depends on whether one is de-
termining reachability or observability properties. The clas-
sification may be different because the state equation and
measurement (output) equation may belong to different classes.
For example a given nonlinear system may be described by a
differential equation of analytic functions and yet have a
bilinear form for the output equation. Hence, for controlla-
bility determination the system would be treated as an analytic
system but for observability analysis, theorems relevant for
bilinear systems would be used. The reader is advised to bear
this in mind when attempting to classify a nonlinear system.

Smooth Systems - This is the broadest class of the

aforementioned nonlinear systems. The general form for smooth

systems is:

x(t) = f(x, u) (4.1-1)

x(0) = x_ (4.1-2)
and

y(t) = h(x) (4.1-3)

83



where ue A/C Rm, XM a c® connected manifold of dimension n
and f and h are C” function of their arguments. C” means that
partial derivatives (of f and h) of all orders exist and are
continuous. A C~ manifold is a smooth manifold hence the sys-
tem's name smooth for the system described by Egs. 4.1-1 to
4.1-3. A manifold is a special entity of differential geometry
which is beyond the scope of this report to define. The reader
is referred to Ref. 56, Chapter 5 for a concise definition of
a manifold. Note, however, that manifolds and differential
geometry are important tools for establishing reachability,
observability, and realization results for smooth systems, as
well as analytic, and linear-analytic systems.

Analytic Systems - Analytic systems have the same
form as presented in Egqs. 4.1-1 to 4.1-3 but have gesZﬂZRn,
xCM a C"-connected manifold of dimension n and f and h are C”

functions of their arguments. c’, where w is finite, means
that all partial derivatives of order less than or equal to w
exist and are continuous. Furthermore f and h are analytic
functions, signifying that for a value of X Xoean, R™, f and
h are analytic at a point Xy Yy if the partial derivatives of
f and h exists not only at x_, u, but at each point x, u in
some neighborhood. f and h are analytic in a region Q if they
are analytic at every point in RT, R™ (Ref. 55). The advan-
tage of real analytic functions is that they may be expressed

as a convergent Taylor series in a neighborhood of each point.

Linear-Analytic Systems - The next class of nonlinar

systems are linear-analytic systems, which are expressed as

*This definition enforces the fact that the admissible controls
do not span the entire space Rm, but typically only form a
subset of R™ denoted Z/.
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k= £ + ) u (o) gt (4.1-4)

x(0) = x (4.1-5)

where f(x) and g(x) are analytic functious of their arguments
X and the output equation is described by Eq. 4.1-3. Equation
4.1-4 is linear in the control u, hence the term linear-analytic.
The importance of linear-analytic systems stems from attempting
to construct reachability results for analytic systems. In
particular Ref. 31 demonstrates that if an analytic system is
linear in the control, hence linear-analytic, a computable
reachability test can be derived. Linear-analytic systems can
also be used to model the application of linear feedback con-
trol to a nonlinear plant.

Polynomic Systems - Another important class of non-

linear systems in recent research is polynomic systems. Their
importance stems from their occurrence in the modeling of physi-
cal systems and in approximation techniques based on series of
orthogonal polynomials. Furthermore, they are very amenable to
Volterra series representations, hence much of the work with
polynomic systems is through the use of Volterra series. The
relationship with functional expansions is significant because
of the powerful tools from functional analysis regarding the
representation of functions with a polynomial expansion, i.e.,
the Weierstrass Approximation Theorem (see Ref. 58, Ch. 6).
This theorem allows one to determine if a certain polynomial,
e.g., the trigonometric functions (1, sin t, cos t, ...,

sin nt, cos nt), can be used to approximate an arbitrary
function.

The general form for polynomic systems is
x(t) = P(x, u) (4.1-6)
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y(t) = h(x) (4.1-7)

where uG:Rm, X € Rn, ye:Rp, and P(-, +) and h(-) are polynomial
functions of their arguments. Note that Eqs. 4.1-6 and 4.1-7
are sufficiently general to include linear systems and bilinear
systems. The generality of including linear systems and being
applicable to almost any problem through approximation has led
researchers to develop a special field of systems theory called
polynomic systems (e.g., Refs. 43 and 46). In the present re-
port, however, linear and bilinear systems are discussed sepa-
rately from any general polynomic system theory.

Bilinear Systems - The next class of nonlinear systems,
bilinear, represents a subset of polynomic systems. This is
the most widely studied class of nonlinear systems. The at-

tractiveness of bilinear systems orginates in their nearly
linear characteristics and in the applicability of bilinear
models to physical phenomena in engineering, chemistry, biol-
ogy, and economics (Ref. 49). Bilinear systems are represented
by the differential equation

n
x(t) = F(t) x + G(t) u + Z N.(t) X ug (4.1-8)
i=1
where Fe R™™ Ge R™™ and
m
DN () xu, = (NO)X) u (4.1-9)
i=1

-a bilinear function in x and u where N(t) is a nxm matrix. In
addition, bilinear systems are typically assumed to possess
linear output equations, i.e.,
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y(t) = H(t) x(t) (4.1-10)

Consequently, bilinear systems are linear systems with the
addition of the bilinear form (N(t)x)u. Figure 4.1-2 contains
a block diagram of a generic bilinear system. A specific type
of bilinear systems in which F and G are skew-symmetric and
time-invariant occurs in the modeling of conservative (i.e.,
conservation of energy) systems. Aircraft equations of motion,
perturbed about a reference flight condition, represent a
physical system that becomes a bilinear form with a skew sym-
metric matrix N. These conservative systems are said to evolve
on spheres for any control, i.e., ||x(t)|] = |Ix(o)||. In
Ref. 57 significant theorems regarding controllability and
optimization of conservative bilinear systems have been de-
rived. Further discussion of system-theoretic results for
bilinear systems can be found in Section 4.2.

Figure 4.1-2 Bilinear System Block Diagram
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Factorable Systems - The final class of nonlinear

systems to be considered is factorable systems. Factorable
systems are composed of linear systems connected in parallel
with their outputs multiplied. The usefulness of factorable
systems arises in the application of Volterra series, where it
is known that systems with seperable Volterra kernels may be
expressed as finite sums of factorable systems (Ref. 41).
Furthermore, as in the case of polynomic systems, factorable
systems are extremely useful approximations to common nonlin-
earities. In Ref. 27 the authors state "over a finite time
interval, any continuous-time system can be arbitrarily approx-
imated by a factorable system."

The general form for factorable systems is

x(t) = F x(t) + G u(t) (4.1-11)

and

y(t)

(1]
n ==

ul hi gi(t) (4.1-12)
where each x. is of dimension n.; i.e., the state vector of
each of the parallel subsystems. However, Eq. 4.1-11 is simply
a linear time-invariant differential equation; hence linear
system theory can be applied for determining reachability/
controllability. The output equation, Eq. 4.1-12, requires
nonlinear theory to deduce observability/reconstructability
and realization properties. Furthermore, if a control design
is desired, nonlinear theory is once again required for both
open and closed-loop analysis. Thus, even the apparently in-
nocuous system of Eqs. 4.1-11 and 4.1-12 far exceeds the capa-
bilities of linear system theory. Finally, factorable systems
are specific examples that reinforce the fact that reachability
and observability are not duals of one another for certain
classes of nonlinear systems.
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The nonlinear system classes that are described in
this subsection: smooth, analytic, linear-analytic, polynomic,
bilinear, and factorable are by no means an exhaustive list of
either possible classes of nonlinear systems or of the special
nonlinear systems that arise in applications. One obvious
omission has been nonlinear differential equations of mathe-
matical physics which have been the subject of intense invest:-
gation, e.g., the Van der Pol and Rayleigh equations. The
existence of so many classes of nonlinear systems and so much
specialized investigation may lead orie to conclude that the
pursuit of global nonlinear system :heory is futile. Never-
theless specific works, e.g., Ref. 16 stressing a qualitive
approach to norlinear systems and Ret. 18 emphasizing the
Volterra/Wiener (frequency-domain) approach, provide suffi-
ciently general results that can be applied to diverse systems.
The specialization occurs when one uses the physics, chemistry
or empirical data in a problem to simplify the differential
equations or to generate special theorems. A classic example
is the linearization about steady-trimmed flight of the non-

linear equations of motion of an air vehicle.

In the NFQ research, the crucial issues regarding the
usefulness of a particular technique from nonlinear system

theory are:

° The applicability of the nonlinear system-
theoretic concept, e.g., realization, to
the aircraft equations of motion with
the flexibility to provide flying
qualities criteria

o The capability to approximate the aircraft

equations of motions by recasting into
a particular class of nonlinear systems.

The ftollowing sections (4.2 and 4.3) address the first topic
by describing what are considered to be the most promising
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techniques in reachability, observability, realization, stabil-
ity theory, nonlinear feedback, and optimal control; the system-

theoretic concepts outlined in Fig. 4.1-1.

47 NONLINEAR REACHABILITY, OBSERVABILITY, AND REALIZATION

The system-theoretic concepts of: reachability/con-
trollability, observability/reconstructability and realization
are defined in this section. Significant theorems for deter-
mining these properties for a given nonlinear system are docu-
mented as well. The material presented in this section is
emphasiz2d throughout the remainder of this report because of
its applicability to flying qualities analysis. The system-
theoretic concepts take on the following meanings when applied
to aircraft:

° Reachability/controllability of the air-
craft system from pilot inputs quantifies
the map of pilot inputs to possible states
of the aircraft

° Observability/reconstructability permits
the evaluation of which modes can be
perceived by the pilot o." can be se-sed
by the flight instruments

° Realization theory 1is essential for
reconstructing flying qualities, e.g.,
canonical systems, models of the aircraft
from flight test data.

In discussing these concepts, theorems will be pre-
S
sented without proof, with an emphasis on theorems that provide
tests and are apparently computable; i.e., are amenable to con-

ventional numerical algorithms. However, the determination of

<L . b .
~The reader is reminded to consult subsection 4.1.2 when the-
orems are restricted to a specific class of nonlinear systems.
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the applicability of these concepts to nonlinear flying quali-
ties analysis has led to the selection of a particular control-
lability theorem which is desciibed in detail in Section 4.3.

4.2.1 Nonlinear Reachability/Controllability

The majority of contributions to nonlinar reachability/
controllability have been derived with the aid of functional
analysis or differential geometry. Although the methods differ,
the aim of all approaches is to state a theorem with which a
system can be determined to be reachable or controllable.
Prior to examining these theorems it is useful to review
reachability/controllability for linear systems:

) Definition -- REACHABILITY -- Given the
linear system

x=Fx+Gu (4.2-1)

= - and

y = Hx (4.2-2)

for §O€ERn, Q(§O) equals the set of
reachable states: §£§Q(§o) if there is
an input u(t), t < t < t, such that

u(t)

(}. tO) — (:‘Sla tl)

O’
i.e., u(t) forces the system from
the initial state (50, to) to the
final state (51, tl) e Q (50);

However, the statment that a system is simply reach-
able is of little practical value; something must be stated
concerning the reachable set Q(go). Hence, the concept of
complete reachability.
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° Definition -- A system is completely
reachable if the set of reachable states

Q(x,) = R" v X,» i.e., the set of sol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>